Modeling the impact of COVID-19 vaccination for the state of Florida

Thomas J. Hladish
Department of Biology & Emerging Pathogens Institute
University of Florida
“In conclusion …”
Conclusions

- Main benefit will be prevention of death and severe disease among vaccinees
- Vaccination campaign is too little, too late to disrupt 2021 transmission
- Epidemic waves in future years (2023?) can still be prevented by vaccination
- Mutant strains could make spring 2021 much worse
What can vaccines (potentially) do?

● For the vaccinee:
 ○ Reduced mortality
 ○ Reduced symptoms

● For the population:
 ○ Reduced transmission given infection (broken transmission chains)
 ■ Protection of unvaccinated & unsuccessfully vaccinated people
 ■ Elimination/eradication
 ○ Reduced public health, economic, social burden
So you want to know the future ...

We need to understand:

- **Population**
 - Demographics
 - Spatial structure
 - Interaction patterns
 - Behaviors
 - Non-pharmaceutical interventions

- **Pathogen**
 - Outcome probabilities
 - Waiting times

- **Vaccine**
 - Efficacies against the possible outcomes
What we need to know about vaccine efficacy

- VE_S vaccine efficacy against infection
- VE_P vaccine efficacy against clinical disease/infection
- VE_{SP} vaccine efficacy against clinical disease in those infected (primary endpoint in phase III trials)
 - $\text{VE}_{SP} = 1 - (1 - \text{VE}_S) (1 - \text{VE}_P)$
- VE_I vaccine efficacy against transmission to others/infection
What we know about VE for three vaccines

<table>
<thead>
<tr>
<th>Platform</th>
<th>Pfizer / BioNTech</th>
<th>Moderna</th>
<th>Astra Zeneca / Oxford U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine efficacy against disease VE_{SP}</td>
<td>95% ($P<0.0001$)</td>
<td>94.1% ($P<0.0001$)</td>
<td>70% (pooled) 90% (low dose) and 61% (standard dose) $P<0.0001$</td>
</tr>
<tr>
<td>Total number of cases, VE_{SP} for severe disease</td>
<td>170 cases (8 in vaccine group) 10 severe cases (9 in placebo, 1 in vaccine group)</td>
<td>196 cases 30 severe cases, all in placebo group</td>
<td>131 cases across 2 trials No severe cases in vaccines</td>
</tr>
<tr>
<td>Vaccine efficacy against infection VE_S</td>
<td>??</td>
<td>63% [32 to 80] against asymptomatic infection</td>
<td>59% [1 to 83]) against asymptomatic infection in the LD/SD cohort and 4% [−72 to 46] in the SD/SD group</td>
</tr>
<tr>
<td>Vaccine efficacy against transmission VE_I</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>
How do we measure vaccine impact?

- Direct benefit to vaccinated individuals (~efficacy)
- Indirect benefit to unvaccinated & vaccinated individuals

Scenarios where only direct benefit matters

Counterfactual (No vaccine)

Vaccine only prevents disease

No local transmission
How do we measure vaccine impact?

- Direct benefit to vaccinated individuals (~efficacy)
- Indirect benefit to unvaccinated & vaccinated individuals

Scenarios where only direct benefit matters
How do we measure vaccine impact?

- Direct benefit to vaccinated individuals (~efficacy)
- Indirect benefit to unvaccinated (& vaccinated) individuals

Diagram:

Counterfactual
(No vaccine)

Vaccine prevents
infection
How do we measure vaccine impact?

- Direct benefit to vaccinated individuals (~efficacy)
- Indirect benefit to unvaccinated (& vaccinated) individuals
- Overall benefit = direct benefit + indirect benefit

Best measure of public health impact
Population immunity needed to prevent/shrink an epidemic

Assumes a homogenous, well-mixed population

Natural immunity counts too!
Critical questions

- What amount of natural immunity is in the population?
- How much transmission is really happening?
- What will vaccine roll-out look like?
- What’s going on with the mutants?
Taking a step back:
What do we know about the population?

Homogenous population

Reality
Time-varying factors

Infection detection

Case reporting delay

Death reporting delay
Time-varying factors

CBS.com
Our model
COVID-19 natural history model

- Infections can be
 - Asymptomatic
 - Mild
 - Severe (possibly hospitalized)
 - Critical (possibly receive intensive care)
 - Fatal

- Probabilistic state durations
- Outcome affects detection, does not (directly) affect infectiousness
- Detection probability and lag are time-varying and depend on outcome
- Age- and health-dependent outcome probabilities
- ICU reduces mortality
Natural immunity

- Starting immunity is log-normally distributed
- Wanes exponentially
- Susceptible below threshold
- Dan et al & PHE preprint

Dan et al (2021) Science
DOI: 10.1126/science.abf4063
FL Synthetic Population

- 20.6m people
- 8.9m households
 - compliance score ~ U(0, 1)
- 7.6k schools
- 3.9k long-term-care facilities
- 307 hospitals
- 2.3m other workplaces
 - 590k non-essential
- Also have subpopulations

~10G of RAM, 8 min per year for statewide model
Data sources

- US Census--American Community Survey (household dist. & composition)
- Agency for Healthcare Administration (AHCA; hospital & LTCF locations)
- National Corporation Directory (workplace locations)
- CDC Behavioral Risk Factor Surveillance System (BRFSS; comorbidity survey by county)
- UF Geoplan Center (shapefiles, school locations)
- SafeGraph and Cuebiq (mobility data)
Associations between people and locations

Proximity-based gravity models:

- Allocate students to schools (based on grade-range; enrollment for higher ed)
- Workers to workplaces (workplace size ~ pareto fit to NAICS)
- Households to hospitals (AHCA)
- Inter-household connections (probabilistic based on household size)
Example model household from Miami, FL
Transmission settings

- **Within-household**
 - Complete graph/frequency-dependent
 - Age-specific susceptibility and pathogenicity reduce cases in children

- **Between-household**
 - Interaction network, scales with household size
 - Social distancing compliance reduces contact
 - Households with similar compliance more likely to interact

- **Workplace**
 - Non-essential workplaces close given order
 - Social distancing reduces transmissibility

- **Hospital**
 - Employees and a subset of severe and critically ill patients

- **Long term care facility**
 - Employees and residents
Vaccine assumptions*

- \(V_E_S = 0.6 \)
- \(V_E_P = 0.875 \)
- \(V_E_{SP} = 0.95 \)
- Efficacy occurs after 10 days, is durable

* consistent with data for both mRNA vaccines

Polack et al (2020), NEJM
DOI: 10.1056/NEJMoa2034577
Vaccination campaign assumptions

- Campaign starts at the beginning of 2021
- 50% coverage
- >65-year-olds vaccinated first, then 16- to 64-year-olds
- Two distribution rates:
 - 0.12% of population per day (current rate)
 - 0.3% of population per day (Biden proposal)
No mutant strain

Rt

Case incidence per 10k

Death incidence per 10k

- No Vaccine
- Slower rollout
- Faster rollout
Transmission Process + Observation Process = Reported Data
Effectiveness and cases (deaths, etc.) averted

Effectiveness = 1 - \[\frac{\text{# cases given vac}}{\text{counterfactual # cases}}\]

Cases averted = (counterfactual # cases) - (# cases given vac)
With 50% more infectious mutant strain introduced during Jan 2021
Some important assumptions and limitations

- ~35% cumulative attack rate as of Jan 20, 2021
- NPIs will not change during next ~6 months
- Seasonality is not a major factor
- Vaccine works against mutant strains
Conclusions

- Main benefit will be prevention of death and severe disease among vaccinees.
- Vaccination campaign is too little, too late to disrupt 2021 transmission.
- Epidemic waves in future years (2023?) can still be prevented by vaccination.
- Mutant strains could make spring 2021 much worse.
Thank you!

University of Florida
Sanjana Bhargava
Natalie Dean
Alyssa Goodyear
Noah Huff
Ira Longini, Jr
Zach Madewell
Dani Perdomo
Alex Pillai
Ben Toh

London School of Hygiene and Tropical Medicine
Carl Pearson

National Institute of Standards and Technology
Arlin Stoltzfus

University of Michigan
Jim Koopman

University of Washington
Betz Halloran

National Corporation Directory

SafeGraph
How many people in Florida remain susceptible*?

- Based on deaths (HIC IFR of 1.15% from Brazeau et al, 29 Oct 2020):
 - 0.90 (95% pred interval: [0.86, 0.94])

As of 12 Jan, 2021
<table>
<thead>
<tr>
<th>Location</th>
<th>Deaths from COVID-19, no. (date)</th>
<th>Inferred infection fatality rate (corrected), %</th>
<th>% of deaths from COVID-19 in people < 70 years</th>
<th>Infection fatality rate in people < 70 years (corrected), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA (10 states)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, Puget Sound</td>
<td>207 (4 April)</td>
<td>0.43 (0.43)</td>
<td>10 (state, < 60 years)</td>
<td>0.05 (0.05)</td>
</tr>
<tr>
<td>Utah</td>
<td>58 (4 May)</td>
<td>0.08 (0.08)</td>
<td>28 (< 65 years)</td>
<td>0.03 (0.03)</td>
</tr>
<tr>
<td>New York</td>
<td>4146 (4 April)</td>
<td>0.65 (0.65)</td>
<td>34 (state)</td>
<td>0.25 (0.25)</td>
</tr>
<tr>
<td>Missouri</td>
<td>329 (30 April)</td>
<td>0.20 (0.20)</td>
<td>23</td>
<td>0.05 (0.05)</td>
</tr>
<tr>
<td>Florida, south</td>
<td>295 (15 April)</td>
<td>0.25 (0.25)</td>
<td>28 (state)</td>
<td>0.08 (0.08)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>2718 (6 May)</td>
<td>1.54 (1.54)</td>
<td>18</td>
<td>0.31 (0.31)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>806 (11 April)</td>
<td>0.30 (0.30)</td>
<td>32</td>
<td>0.10 (0.10)</td>
</tr>
<tr>
<td>California, San Francisco Bay</td>
<td>321 (1 May)</td>
<td>0.50 (0.50)</td>
<td>25</td>
<td>0.14 (0.14)</td>
</tr>
<tr>
<td>Pennsylvania, Philadelphia</td>
<td>697 (26 April)</td>
<td>0.45 (0.45)</td>
<td>21 (state)</td>
<td>0.10 (0.10)</td>
</tr>
<tr>
<td>Minnesota, Minneapolis</td>
<td>436 (13 May)</td>
<td>0.48 (0.48)</td>
<td>20 (state)</td>
<td>0.10 (0.10)</td>
</tr>
<tr>
<td>USA (California, Bay Area)</td>
<td>12 (22 March)</td>
<td>0.15 (0.12)</td>
<td>25</td>
<td>0.04 (0.03)</td>
</tr>
<tr>
<td>USA (California, Los Angeles)</td>
<td>724 (19 April)</td>
<td>0.20 (0.18)</td>
<td>24 (< 65 years)</td>
<td>0.06 (0.05)</td>
</tr>
<tr>
<td>USA (California, San Francisco)</td>
<td>0 (4 May)</td>
<td>0.00 (0.00)</td>
<td>0</td>
<td>0.00 (0.00)</td>
</tr>
<tr>
<td>USA (California; Santa Clara)</td>
<td>94 (22 April)</td>
<td>0.18 (0.17)</td>
<td>35</td>
<td>0.07 (0.06)</td>
</tr>
<tr>
<td>USA (Idaho, Boise)</td>
<td>14 (24 April)</td>
<td>0.16 (0.13)</td>
<td>14 (Idaho)</td>
<td>0.02 (0.02)</td>
</tr>
<tr>
<td>USA (Georgia)</td>
<td>198 (7 May)</td>
<td>0.44 (0.44)</td>
<td>30</td>
<td>0.15 (0.15)</td>
</tr>
<tr>
<td>USA (Idaho, Blaine county)</td>
<td>5 (19 May)</td>
<td>0.10 (0.08)</td>
<td>14 (Idaho)</td>
<td>0.02 (0.01)</td>
</tr>
<tr>
<td>USA (Indiana)</td>
<td>1099 (30 April)</td>
<td>0.58 (0.46)</td>
<td>24</td>
<td>0.16 (0.13)</td>
</tr>
<tr>
<td>USA (Louisiana, Baton Rouge)</td>
<td>420 (30 July)</td>
<td>0.91 (0.73)</td>
<td>32 (Louisiana)</td>
<td>0.32 (0.25)</td>
</tr>
<tr>
<td>USA (Louisiana, Orleans and Jefferson Parish)</td>
<td>925 (16 May)</td>
<td>1.63 (1.31)</td>
<td>32</td>
<td>0.57 (0.46)</td>
</tr>
<tr>
<td>USA (New York)</td>
<td>18610 (30 April)</td>
<td>0.66 (0.54)</td>
<td>34</td>
<td>0.26 (0.23)</td>
</tr>
<tr>
<td>USA (New York Columbia University Medical Center, New York City and CareMount central laboratory, five New York state counties)</td>
<td>965 (28 March, New York state)</td>
<td>0.15 (0.14)</td>
<td>34</td>
<td>0.06 (0.05)</td>
</tr>
<tr>
<td>USA (New York, Brooklyn)</td>
<td>4894 (19 May)</td>
<td>0.41 (0.33)</td>
<td>34 (New York state)</td>
<td>0.15 (0.14)</td>
</tr>
<tr>
<td>USA (Rhode Island), blood donors</td>
<td>430 (11 May)</td>
<td>1.04 (0.83)</td>
<td>17</td>
<td>0.20 (0.16)</td>
</tr>
</tbody>
</table>
R(t)
(Time-varying reproduction number)

Weekly cases per 10k

Cumulative effectiveness
(Fraction of prevented cases)

Cumulative cases averted
(aka prevented cases)