Michael H Norris,
AST PROF
Teaching Profile
Courses Taught
2022-2023
GEO6938 Selected Topics in Geography
2023
GEO3930 Special Topics
2023
GEO4911 Undergraduate Research in Geography
Research Profile
Open Researcher and Contributor ID (ORCID)
0000-0002-5285-0432
Publications
2023
Beyond the spore, the exosporium sugar anthrose impacts vegetative Bacillus anthracis gene regulation in cis and trans.
Scientific reports.
13(1)
[DOI] 10.1038/s41598-023-32162-x.
[PMID] 36977718.
2022
An Investigation of Burkholderia pseudomallei Seroprevalence in Market Pigs Slaughtered at Selected Pig Abattoirs in Uganda
Pathogens.
11(11)
[DOI] 10.3390/pathogens11111363.
[PMID] 36422614.
2022
Characterization of Bacillus anthracis replication and persistence on environmental substrates associated with wildlife anthrax outbreaks
PLOS ONE.
17(9)
[DOI] 10.1371/journal.pone.0274645.
[PMID] 36129912.
2022
Genome-scale CRISPR screens identify host factors that promote human coronavirus infection.
Genome medicine.
14(1)
[DOI] 10.1186/s13073-022-01013-1.
[PMID] 35086559.
2022
Low-frequency variants in mildly symptomatic vaccine breakthrough infections presents a doubled-edged sword.
Journal of medical virology.
94(7):3192-3202
[DOI] 10.1002/jmv.27726.
[PMID] 35307848.
2021
Combating Multidrug-Resistant Bacteria by Integrating a Novel Target Site Penetration and Receptor Binding Assay Platform Into Translational Modeling.
Clinical pharmacology and therapeutics.
109(4):1000-1020
[DOI] 10.1002/cpt.2205.
[PMID] 33576025.
2021
Correction: Convergent evolution of diverse Bacillus anthracis outbreak strains toward altered surface oligosaccharides that modulate anthrax pathogenesis.
PLoS biology.
19(2)
[DOI] 10.1371/journal.pbio.3001112.
[PMID] 33556066.
2021
Highly Specific Sigma Receptor Ligands Exhibit Anti-Viral Properties in SARS-CoV-2 Infected Cells
Pathogens.
10(11)
[DOI] 10.3390/pathogens10111514.
[PMID] 34832669.
2021
Identification of a PadR-type regulator essential for intracellular pathogenesis of Burkholderia pseudomallei.
Scientific reports.
11(1)
[DOI] 10.1038/s41598-021-89852-7.
[PMID] 34001967.
2021
Identification of antiviral antihistamines for COVID-19 repurposing
Biochemical and Biophysical Research Communications.
538:173-179
[DOI] 10.1016/j.bbrc.2020.11.095.
[PMID] 33309272.
2021
The Burkholderia pseudomallei intracellular ‘TRANSITome’
Nature Communications.
12(1)
[DOI] 10.1038/s41467-021-22169-1.
[PMID] 33772012.
2020
Convergent evolution of diverse Bacillus anthracis outbreak strains toward altered surface oligosaccharides that modulate anthrax pathogenesis
PLOS Biology.
18(12)
[DOI] 10.1371/journal.pbio.3001052.
[PMID] 33370274.
2020
Distribution of Serological Response to Burkholderia pseudomallei in Swine from Three Provinces of Vietnam
International Journal of Environmental Research and Public Health.
17(14)
[DOI] 10.3390/ijerph17145203.
[PMID] 32708490.
2020
Humoral Immune Responses to Burkholderia pseudomallei Antigens in Captive and Wild Macaques in the Western Part of Java, Indonesia
Veterinary Sciences.
7(4)
[DOI] 10.3390/vetsci7040153.
[PMID] 33050516.
2020
Laboratory strains of Bacillus anthracis lose their ability to rapidly grow and sporulate compared to wildlife outbreak strains
PLOS ONE.
15(1)
[DOI] 10.1371/journal.pone.0228270.
[PMID] 31978128.
2020
Nucleotide polymorphism assay for the identification of west African group Bacillus anthracis: a lineage lacking anthrose.
BMC microbiology.
20(1)
[DOI] 10.1186/s12866-019-1693-2.
[PMID] 31910798.
2020
Raxibacumab: a panacea for anthrax disease?
The Lancet. Infectious diseases.
20(8):886-887
[DOI] 10.1016/S1473-3099(20)30164-X.
[PMID] 32333846.
2020
TaqMan Assays for Simultaneous Detection of Bacillus anthracis and Bacillus cereus biovar anthracis
Pathogens.
9(12)
[DOI] 10.3390/pathogens9121074.
[PMID] 33371332.
2019
An in situ high-throughput screen identifies inhibitors of intracellular Burkholderia pseudomallei with therapeutic efficacy.
Proceedings of the National Academy of Sciences of the United States of America.
116(37):18597-18606
[DOI] 10.1073/pnas.1906388116.
[PMID] 31439817.
2019
Burkholderia pseudomallei acquired ceftazidime resistance due to gene duplication and amplification
International Journal of Antimicrobial Agents.
53(5):582-588
[DOI] 10.1016/j.ijantimicag.2019.01.003.
2019
Linking Geospatial and Laboratory Sciences to Define Mechanisms behind Landscape Level Drivers of Anthrax Outbreaks
International Journal of Environmental Research and Public Health.
16(19)
[DOI] 10.3390/ijerph16193747.
[PMID] 31590291.
2018
Lipid A Remodeling Is a Pathoadaptive Mechanism That Impacts Lipopolysaccharide Recognition and Intracellular Survival of Burkholderia pseudomallei.
Infection and immunity.
86(10)
[DOI] 10.1128/IAI.00360-18.
[PMID] 30037795.
2018
Outer Membrane Vesicle Vaccines from Biosafe Surrogates Prevent Acute Lethal Glanders in Mice.
Vaccines.
6(1)
[DOI] 10.3390/vaccines6010005.
[PMID] 29320408.
2018
Seroepidemiology of Burkholderia pseudomallei, Etiologic Agent of Melioidosis, in the Ouest and Sud-Est Departments of Haiti.
The American journal of tropical medicine and hygiene.
99(5):1222-1228
[DOI] 10.4269/ajtmh.18-0352.
[PMID] 30226137.
2018
Transcriptional and post-transcriptional regulation of PenA β-lactamase in acquired Burkholderia pseudomallei β-lactam resistance.
Scientific reports.
8(1)
[DOI] 10.1038/s41598-018-28843-7.
[PMID] 30006637.
2017
An avirulent Burkholderia pseudomallei ∆purM strain with atypical type B LPS: expansion of the toolkit for biosafe studies of melioidosis.
BMC microbiology.
17(1)
[DOI] 10.1186/s12866-017-1040-4.
[PMID] 28592242.
2017
Burkholderia pseudomallei natural competency and DNA catabolism: Identification and characterization of relevant genes from a constructed fosmid library.
PloS one.
12(12)
[DOI] 10.1371/journal.pone.0189018.
[PMID] 29253888.
2017
Development of Immunoassays for Burkholderia pseudomallei Typical and Atypical Lipopolysaccharide Strain Typing.
The American journal of tropical medicine and hygiene.
96(2):358-367
[DOI] 10.4269/ajtmh.16-0308.
[PMID] 27994103.
2017
Spatial transcriptomes within the Pseudomonas aeruginosa biofilm architecture.
Molecular microbiology.
106(6):976-985
[DOI] 10.1111/mmi.13863.
[PMID] 29030956.
2017
Structural diversity of Burkholderia pseudomallei lipopolysaccharides affects innate immune signaling.
PLoS neglected tropical diseases.
11(4)
[DOI] 10.1371/journal.pntd.0005571.
[PMID] 28453531.
2015
Single prokaryotic cell isolation and total transcript amplification protocol for transcriptomic analysis.
Nature protocols.
10(7):974-84
[DOI] 10.1038/nprot.2015.058.
[PMID] 26042386.
2014
Blocking phosphatidylcholine utilization in Pseudomonas aeruginosa, via mutagenesis of fatty acid, glycerol and choline degradation pathways, confirms the importance of this nutrient source in vivo.
PloS one.
9(7)
[DOI] 10.1371/journal.pone.0103778.
[PMID] 25068317.
2013
Elucidating the Pseudomonas aeruginosa fatty acid degradation pathway: identification of additional fatty acyl-CoA synthetase homologues.
PloS one.
8(5)
[DOI] 10.1371/journal.pone.0064554.
[PMID] 23737986.
2011
Knockout and pullout recombineering for naturally transformable Burkholderia thailandensis and Burkholderia pseudomallei.
Nature protocols.
6(8):1085-104
[DOI] 10.1038/nprot.2011.346.
[PMID] 21738123.
2011
The Burkholderia pseudomallei Δasd mutant exhibits attenuated intracellular infectivity and imparts protection against acute inhalation melioidosis in mice.
Infection and immunity.
79(10):4010-8
[DOI] 10.1128/IAI.05044-11.
[PMID] 21807903.
2011
Transcript amplification from single bacterium for transcriptome analysis.
Genome research.
21(6):925-35
[DOI] 10.1101/gr.116103.110.
[PMID] 21536723.
2010
Multiple FadD acyl-CoA synthetases contribute to differential fatty acid degradation and virulence in Pseudomonas aeruginosa.
PloS one.
5(10)
[DOI] 10.1371/journal.pone.0013557.
[PMID] 21042406.
2010
Stable, site-specific fluorescent tagging constructs optimized for burkholderia species.
Applied and environmental microbiology.
76(22):7635-40
[DOI] 10.1128/AEM.01188-10.
[PMID] 20851961.
2009
Engineering of tellurite-resistant genetic tools for single-copy chromosomal analysis of Burkholderia spp. and characterization of the Burkholderia thailandensis betBA operon.
Applied and environmental microbiology.
75(12):4015-27
[DOI] 10.1128/AEM.02733-08.
[PMID] 19376905.
2009
Glyphosate resistance as a novel select-agent-compliant, non-antibiotic-selectable marker in chromosomal mutagenesis of the essential genes asd and dapB of Burkholderia pseudomallei.
Applied and environmental microbiology.
75(19):6062-75
[DOI] 10.1128/AEM.00820-09.
[PMID] 19648360.
Grants
Sep 2022
ACTIVE
Estimating and modeling melioidosis risk and prevalence in Vietnam
Role: Co-Project Director/Principal Investigator
Funding: DEFENSE THREAT REDUCTION AGENCY
Nov 2021
– Dec 2022
PIADC 257 Decontamination Planning & Strategy
Role: Co-Project Director/Principal Investigator
Funding: MERRICK & COMPANY
via US DEPT OF HOMELAND SECURITY
Sep 2021
ACTIVE
Virulence and Protective Efficacy of Vaccines Against Antigenically Novel Bacillus anthracis Strains
Role: Principal Investigator
Funding: DEFENSE THREAT REDUCTION AGENCY
Jun 2021
– Jun 2022
An investigation of Burkholderia pseudomallei seroprevalence in market swine slaughtered at selected pig slaughterhouses in Uganda
Role: Principal Investigator
Funding: CORNELL UNIV
Aug 2020
– Nov 2022
TD-O4-013 Anthrax Surveillance in The Northern Philippines (Twin)
Role: Other
Funding: LEIDOS
via DEFENSE THREAT REDUCTION AGENCY
Jul 2019
– Feb 2021
STEP IDIQ Technical Directive TD-O2-003 Vietnam Melioidosis Research Preparedness Part II
Role: Project Manager
Funding: LEIDOS
via DEFENSE THREAT REDUCTION AGENCY
Sep 2018
– May 2019
Technical Directive TD-O1-011: Vietnam Melioidosis Research Preparedness
Role: Project Manager
Funding: LEIDOS
via DEFENSE THREAT REDUCTION AGENCY
Contact Details
Phones:
- Business:
- (352) 273-8445
Emails:
- Business:
- mhnorris@ufl.edu
Addresses:
- Business Mailing:
-
PO Box 117315
GAINESVILLE FL 32611 - Business Street:
-
3414 Turlington Hall
GAINESVILLE FL 32611